TENDENCIAS EN LA DETECCIÓN DE QUIEBRAS CORPORATIVAS: UN ANÁLISIS ENTRE MODELOS
Abstract
The objective of the research is to analyze 30 researches related with the detection of corporate bankruptcies through a visualization map under the criterion: type of model. The results indicate that the most used models are the statistical techniques followed by neural networks, while the theoretical formulas showed a little frequency in the field. On the other hand, it is show that the hybrid models are the most recent trend, which show the possibility of permeating under an evolutionary dynamic. Additionally, the performance among the models indicates that neural networks often outperform statistical techniques, nevertheless the hybrid models surpass their counterpart without exception. The limitation is that the studies analyzed include different sizes of firms and of economies, so the results are generalized. Finally, it is concluded that the hybrid networks can´t overcome some “deficiencies” (lack of interpretation of parameters), which explains –at least in part- the high frequency of using the statistical techniques.
Downloads
References
Altman, E. (1968). “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”. The Journal of Finance, 23 (4), pp. 589-609.
Black, F. y M. Scholes (1973). “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, 81 (3), pp. 637-659.
Castillo, P., J. Castellano, J. Merelo y A. Prieto (2001). “Diseño de Redes Neuronales Artificiales mediante algoritmos evolutivos”. Revista Iberoamericana de Inteligencia Artificial, 14, pp. 2-32.
Freeman, J. (1993). Simulating Neural Networks with Mathematica. Addison-Wesley Professional.
García, O. y A. Morales (2016). “Desempeño Financiero de las Empresas: una Propuesta de Clasificación por RNA”. Dimensión Empresarial, 14, pp. 11-22.
Jacob, C. (2001). Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Publichers.
Mehrotra, K., C. K. Mohan, y S. Ranka (2000). Elements of Artificial Neural Networks. MIT Press. Cambridge, Massachusetts.
Mitchell, M. (1999). An Introduction to Genetic Algorithms. MIT press. Cambridge, Massachusetts.
Odom, M. y R. Sharda (1990). “A Neural Network for Bankruptcy Prediction”. 1990 International Joint Conference on Neural Networks (IJCNN´90).
Pérez, M. (2006). “Artificial Neural Networks and Bankruptcy Forecasting: A State of the Art”. Neural Computation & Application, 15 (2), pp.154-163.
Scott, J. (1981). “The Probability of Bankruptcy: A Comparison of Empirical Predictions and Theoretical Models”. Journal of Banking and Finance, 5 (1), pp. 317-344.
Simon, H. (2006). Las Ciencias de lo Artificial, Comares.
Zhang, G., M. Y. Hu, B. E. Patuwo y D. C. Indro (1999). “Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-validation Analysis”. European Journal of Operational Research, 116 (1), pp.16-32.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.