UNA REFORMULACIÓN DEL MODELO NEOCLÁSICO DE CRECIMIENTO ECONÓMICO

  • Miguel Álvarez Texocotitla Departamento de Economía. Universidad Autónoma Metropolitana unidad Iztapalapa. Ciudad de México, México.
  • Shaní Álvarez-Hernández Departamento de Matemáticas. Universidad Autónoma Metropolitana, Unidad Iztapalapa. Ciudad de México, México.
  • M. David Álvarez-Hérnandez King’s College London, Departement of Mathematics. Londres, Inglaterra.
Keywords: Mathematical Economics, Economic Growth Models, Dynamic Optimization

Abstract

The fundamental purpose of the present research article is to offer a new presentation, complete and understandable, of the Neoclassical model of economic growth. In the first place, the minimum theoretical frame is presented for the construction and justification of the model. Afterwards, the model is posed and solved as a problem of dynamic optimization by means of the Euler-Lagrange equations, only to then proceed with the stability analysis of the model’s equilibrium points. Lastly, the phase space of the model is constructed, using specific parameters.

Downloads

Download data is not yet available.

References

Acemoglu, D., Introduction to Modern Economic Growth, Princeton University Press, New York, 2009, p. 990.

Alvarez Texocotitla, Miguel, y M. David Alvarez-Hernández, “Una Revisión Crítica a los Modelos Básicos de Crecimiento Económico”, Denarius, 29, 2015, pp. 191-252.

Barro, R. J. & X. Sala-i-Martin, Crecimiento Económico, Editorial Reverte, México, 2009, p. 654.

Cass, D., “Optimum Growth in an Aggregative Model of Capital Accumulation”, The Review of Economic Studies, 32, 3, 1965, pp. 233-240.

Cass, D. & K. Shell, “Introduction to Hamiltonian Dynamics in Economics”, Journal of Economic Theory, 12, 1, 1976, pp. 1-10

Lomelí, Héctor E. e Irma B. Rumbros, Métodos dinámicos en economía, Thomson Editores, México, 2005, p. 554

Pedregal, P., Introduction to Optimization, Springer-Verlag, New York, 2004, p. 245.

Pindyck, R. S. y D. L. Rubinfeld, Microeconomía, 7ª ed., Pearson Prentice Hall, Madrid, 2009, p. 845.

Ramsey, F. P., “A Mathematical Theory of Saving”, The Economic Journal, vol. 38, no. 152, 1928, pp. 543-559.

Romer, D., Advanced Macroeconomics, McGraw-Hill, New York, 1996, p. 540.

Shone, Ronald, Economic Dynamics, Cambridge University Press, USA, 2002, p. 708.

Published
01-12-2017
How to Cite
Álvarez Texocotitla, M., Álvarez-Hernández, S., & Álvarez-Hérnandez, M. D. (2017). UNA REFORMULACIÓN DEL MODELO NEOCLÁSICO DE CRECIMIENTO ECONÓMICO. Denarius, (33), 87. Retrieved from https://denarius.izt.uam.mx/index.php/denarius/article/view/7