Economía de la complejidad y la toma de decisiones: una visión desde la dinámica de sistemas.

  • Ricardo Pérez-Ortega Universidad de Guadalajara
  • Laura Plazola-Zamora Universidad de Guadalajara
  • Alvimar de Lucena Costa Junior
Palabras clave: Toma de decisiones, incertidumbre, emociones, racionalidad limitada, rezagos cognitivos

Resumen

El objetivo de este estudio es analizar el efecto de la incertidumbre, las emociones y los sistemas cognitivos, modelados como rezagos temporales, sobre la eficiencia del procesamiento de información para la toma de decisiones a lo largo del tiempo.  Estos rezagos incrementan la carga cognitiva, lo que limita las capacidades cognitivas y el procesamiento de información del agente. Se desarrolló un modelo de Dinámica de Sistemas basado en la Economía de la Complejidad, Economía Conductual, la Teoría de la Desatención Racional y la Teoría de la Información. Los resultados muestran que los rezagos afectan a todo el sistema, e impiden el procesamiento completo de la información disponible. Se concluye que la eficiencia cognitiva del agente depende de sus capacidades cognitivas, y su adaptación a las fluctuaciones de incertidumbre, flujo emocional y carga cognitiva a través del tiempo.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ricardo Pérez-Ortega, Universidad de Guadalajara

Mtro. Ricardo Pérez Ortega

+52 1 33 10747667

Universidad de Guadalajara

ricardo.portega@academicos.udg.mx

Profesor en el Centro Universitario de Ciencias Económico-Administrativas de la UdeG. Doctorado en Estudios Económicos (finalizado y en trámites de titulación), Maestro en Negocios y Estudios Económicos, y con la carrera de Abogado, por la Universidad de Guadalajara. Imparte clases a nivel licenciatura. Temas de interés: Economía del Comportamiento, Economía de la Complejidad, Economía financiera, Derecho Corporativo. Ponente en el XXXI congreso EPIO RED-MIX, 2020 facultad de Ciencias Económicas Universidad Nacional de Córdoba, en el XI congreso de la Sociedad Mexicana de Investigación de Operaciones; Universidad de las Américas Puebla. Coautor capitulo de libro La investigación en ciencias económico-administrativas y la sociedad: textos de difusión y divulgación.

Laura Plazola-Zamora, Universidad de Guadalajara

Profesora titular en el Centro Universitario de Ciencias Económico-Administrativas de la UdeG.  Doctorada con mención honorífica en Ingeniería y Maestra en Ingeniería de sistemas por la Universidad Nacional Autónoma de México. Licenciada en Matemáticas por la Universidad de Guadalajara. Imparte materias a nivel licenciatura, maestría y doctorado. Ha dirigido tesis en los tres niveles educativos. Áreas de interés: Evaluación y Decisión Multicriterio, toma de decisiones en grupo, sistemas de apoyo a la decisión, análisis de sistemas complejos, Gobernanza y políticas públicas e innovación en la enseñanza de las Matemáticas. Miembro de la Sociedad Mexicana de Investigación de Operaciones y de la RED Iberoamericana de Evaluación y Decisión Multicriterio.

Alvimar de Lucena Costa Junior

Doctor en Ciencia en Investigación Operativa y Resolución de Conflictos del CTE-G/ITA. Maestría en Investigación Operativa y Dinámica de Sistemas del CTE-G del ITA en julio de 2018, y su disertación presenta un modelo de Dinámica de Sistemas aplicado a un flujo de carrera. Graduado en Ingeniería Aeronáutica del Instituto Tecnológico de Aeronáutica (1997). Experiencia en el área de Certificación de Empresas de Transporte Aéreo, con énfasis en operaciones aéreas. Experiencia en Evaluación Operacional de Aeronaves, Calificación de Simuladores de Vuelo para entrenamiento de tripulaciones y en regulación de ingeniería de operaciones aéreas. Trabajó en África como experto en la certificación de aerolíneas por la ONU, y ha formado parte de grupos de trabajo sobre regulación de operaciones aéreas en América Latina y la OACI, una agencia relacionada con la aviación afiliada a la ONU. Trabajó en el Instituto de Investigación y Pruebas en Vuelo hasta 2018, como Coordinador de Planificación Estratégica y Supervisión, hasta 2014, luego Jefe de la División de Pruebas en Vuelo hasta 2016, luego Jefe de la Sección de Innovación y Gestión del Conocimiento, hasta su jubilación. Trabajó como consultor de seguridad en Aviación Offshore. Es Especialista en Asuntos Regulatorios en una gran empresa fabricante de aeronaves.

Citas

Abraham, R. H. (1984). COMPLEX DYNAMICAL SYSTEMS. En X. J. R. Avula, R. E. Kalman, A. I. Liapis, & E. Y. Rodin (Eds.), Mathematical Modelling in Science and Technology (pp. 82–86). Pergamon. https://doi.org/10.1016/B978-0-08-030156-3.50020-5

Allen, P. M., Edwards, J. A., Snyder, F. J., Makinson, K. A., & Hamby, D. M. (2014). The Effect of Cognitive Load on Decision Making with Graphically Displayed Uncertainty Information. Risk Analysis, 34(8), 1495–1505. https://doi.org/10.1111/risa.12161

Alvino, L., & Franco, M. (2017). The decision-making process between rationality and emotions. International Journal of scientific research and management, 5(9), 7074–7092. https://doi.org/10.18535/ijsrm/v5i9.18

Anatoliy Tkach, & Tkach, A. (2019). The role of emotions in economic desion-making. Humanities and Social Sciences quarterly, 26(2), 145–155. https://doi.org/10.7862/rz.2019.hss.21

Aracil, J., & Gordillo, F. (1997). Dinámica de sistemas. https://dialnet.unirioja.es/servlet/libro?codigo=216476

Arthur, W. B. (1989). Competing Technologies, Increasing Returns, and Lock-In by Historical Events. Economic Journal, 99(394), 116–131.

Arthur, W. B. (1999). Complexity and the Economy. Science, 284(5411), 107–109.

Arthur, W. B. (2014). Complexity and the Economy.

Arthur, W. B. (2021). Foundations of complexity economics. Nature Reviews Physics, 3(2), Article 2. https://doi.org/10.1038/s42254-020-00273-3

Bah, S., Radzicki, M., & Smith, A. (2023). Bringing Behavioral Economics into System Dynamics: Some Challenges, Solutions, and a Path Forward (pp. 107–135). https://doi.org/10.1007/978-3-031-40635-5_4

Bak, P., Tang, & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. PubMed. https://pubmed.ncbi.nlm.nih.gov/10035754/

Balland, P.-A., Broekel, T., Diodato, D., Giuliani, E., Hausmann, R., O’Clery, N., & Rigby, D. (2022). The new paradigm of economic complexity. Research Policy, 51(3), 104450. https://doi.org/10.1016/j.respol.2021.104450

Bertalanffy, L. von. (1950). An Outline of General System Theory. British Journal for the Philosophy of Science, 1(2), 134–165. https://doi.org/10.1093/bjps/i.2.134

Blaywais, R., & Rosenboim, M. (2019). The effect of cognitive load on economic decisions. Managerial and Decision Economics, 40(8), 993–999. https://doi.org/10.1002/mde.3085

Bragger, J. D., Bragger, D., Hantula, D. A., & Kirnan, J. (1998). Hyteresis and Uncertainty: The Effect of Uncertainty on Delays to Exit Decisions. Organizational Behavior and Human Decision Processes, 74(3), 229–253. https://doi.org/10.1006/obhd.1998.2779

Castaneda, G. (2021). The Paradigm of Social Complexity: An Alternative Way of Understanding Societies and their Economies Praise for the book.

Castañeda, G. (2021). The paradigm of complexity. Centro de estudios Espinosa Iglesias.

Castillo, Sanchez, & Venegas. (2010). La modelación económica Una interpretación de la simulación dinámica de sistemas (Primera). Universidad autónoma Metropolitana.

Cavalieri, D. (2017). Complexity in Economics: System Dynamics and Policy Implications. History of Economic Ideas, 25(3), 101–136.

Cavana, Y., Dangerfield, Pavlov, Radzicki, & Wheat. (2021). Feedback Economics: Economic Modeling with System Dynamics (1st ed.). Springer. https://doi.org/10.1002/sdr.1695

Chen, J. (2002). An Entropy Theory of Value. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.307442

Clark, A. (2015). Embodied Prediction. https://www.semanticscholar.org/paper/Embodied-Prediction-Clark/76a1b8a721673417723915845555175f9ed3eef3

Crookes, D. J., & De Wit, M. P. (2014). Is System Dynamics Modelling of Relevance to Neoclassical Economists? South African Journal of Economics, 82(2), 181–192. https://doi.org/10.1111/saje.12038

Dangerfield, B. (2006). A System Dynamics Model for Economic Planning in Sarawak. https://www.semanticscholar.org/paper/A-System-Dynamics-Model-for-Economic-Planning-in-Dangerfield/69d9312f72dd2390502eb7ff97470f93df832d20

Deck, C., & Jahedi, S. (2015). The Effect Of Cognitive Load On Economic Decision Making: A Survey And New Experiments. European Economic Review, 78, 97–119. https://doi.org/10.1016/j.euroecorev.2015.05.004

Devine, S. (2018). An Economy Viewed as a Far-from-Equilibrium System from the Perspective of Algorithmic Information Theory. Entropy, 20(4), Article 4. https://doi.org/10.3390/e20040228

Dooley, K. J. (2022). Complex adaptive systems. En Handbook of Theories for Purchasing, Supply Chain and Management Research (pp. 335–344). Edward Elgar Publishing. https://www.elgaronline.com/edcollchap/book/9781839104503/book-part-9781839104503-26.xml

Drichoutis, A. C., & Nayga, R. M. (2020). Economic rationality under cognitive load. The Economic Journal, 130(632), 2382–2409. https://doi.org/10.1093/ej/ueaa052

Elsner, W. (2017). Complexity Economics as Heterodoxy: Theory and Policy. Journal of Economic Issues, 51(4), 939–978.

Esther‐Mirjam Sent, & Sent, E.-M. (2000). Complexity in Economics. https://doi.org/10.1007/978-3-030-47898-8

Evans, J. St. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459. https://doi.org/10.1016/j.tics.2003.08.012

Faggini, M., & Parziale, A. (Eds.). (2014). Complexity in Economics: Cutting Edge Research. Springer International Publishing. https://doi.org/10.1007/978-3-319-05185-7

Farmer, J. (2012). Economics needs to treat the economy as a complex system. https://www.semanticscholar.org/paper/Economics-needs-to-treat-the-economy-as-a-complex-Farmer/d6ec0cbc2aa6608a0b2b2b3659959df7e61f4b9e

Forrester, J., W. (1961). Industrial Dynamics. MIT Press, Cambridge, Mass.

Gabaix, X. (2018). Behavioral inattention. https://doi.org/10.1016/bs.hesbe.2018.11.001

Gabaix, X. (2019). Chapter 4—Behavioral inattention. En B. D. Bernheim, S. DellaVigna, & D. Laibson (Eds.), Handbook of Behavioral Economics: Applications and Foundations 1 (Vol. 2, pp. 261–343). North-Holland. https://doi.org/10.1016/bs.hesbe.2018.11.001

García, J. M. (2023). Teoría y ejercicios prácticos de dinámica de sistemas (3a ed.).

Georgescu-Roegen. (1971). The Entropy Law and the Economic Process. Harvard University Press.

Gigerenzer, G. (2008). Why Heuristics Work. Perspectives on Psychological Science, 3(1), 20–29. https://doi.org/10.1111/j.1745-6916.2008.00058.x

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33–56. https://doi.org/10.1037/0033-295X.108.1.33

Gilden, D. L., Thornton, T., & Mallon, M. W. (1995). 1/f noise in human cognition. Science (New York, N.Y.), 267(5205), 1837–1839. https://doi.org/10.1126/science.7892611

Gross, R. G., & Grossman, M. (2010). Executive resources. CONTINUUM: Lifelong Learning in Neurology, 16(4), 140–152.

Haken, H. (1983). Synergetics: An Introduction : Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology. Springer.

Hastie, R., & Dawes, R. M. (2010). Rational choice in an uncertain world: The psychology of judgment and decision making, 2nd ed (pp. xii, 374). Sage Publications, Inc.

Haynes, P., & Alemna, D. (2022). A Systematic Literature Review of the Impact of Complexity Theory on Applied Economics. Economies, 10(8), 192. https://doi.org/10.3390/economies10080192

Hertwig, R., & Erev, I. (2009). The description-experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517–523. https://doi.org/10.1016/j.tics.2009.09.004

Hlavackovaschindler, K., Palus, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46. https://doi.org/10.1016/j.physrep.2006.12.004

Hohwy, J. (2013). The Predictive Mind. Oxford University Press UK.

Kahneman, D. (2011). Thinking, fast and slow (p. 499). Farrar, Straus and Giroux.

Kahneman, D., & Tversky, A. (1979). Prospect theory: Analysis of decision under risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185

Katona, G. (1951). Psychological analysis of economic behavior (pp. ix, 347). McGraw-Hill.

Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press.

Kunc, M. (2016). System dynamics: A behavioral modeling method. 2016 Winter Simulation Conference (WSC), 53–64. https://doi.org/10.1109/WSC.2016.7822079

Lane, D. C. (2017). “Behavioural System Dynamics”: A very tentative and slightly sceptical map of the territory. Systems Research and Behavioral Science, 34(4), Article 4.

Lane, D. C., & Rouwette, E. A. J. A. (2023). Towards a behavioural system dynamics: Exploring its scope and delineating its promise. European Journal of Operational Research, 306(2), 777–794. https://doi.org/10.1016/j.ejor.2022.08.017

Łatuszyńska, M. (2017). System Dynamics Modeling in Behavioral Decision Making. Springer Proceedings in Business and Economics, 243–253.

Laureiro-Martínez, D., & Brusoni, S. (2018). Cognitive flexibility and adaptive decision-making: Evidence from a laboratory study of expert decision makers. Strategic Management Journal, 39(4), 1031–1058. https://doi.org/10.1002/smj.2774

Loewenstein, G. (2000). Emotions in Economic Theory and Economic Behavior. American Economic Review, 90(2), 426–432. https://doi.org/10.1257/aer.90.2.426

Meacham, D., & Prado Casanova, M. (2018). The Over-Extended Mind? Pink Noise and the Ethics of Interaction-Dominant Systems. NanoEthics, 12(3), 269–281. https://doi.org/10.1007/s11569-018-0325-x

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

Montenegro, A. (2011). Información y entropía en economía. 13(25), 199–221.

Morecroft, J. (2015). Strategic Modelling and Business Dynamics: A Feedback Systems Approach: Second Edition. 1–466. https://doi.org/10.1002/9781119176831

Morriss, J., Tupitsa, E., Dodd, H. F., & Hirsch, C. R. (2022). Uncertainty Makes Me Emotional: Uncertainty as an Elicitor and Modulator of Emotional States. Frontiers in Psychology, 13, 777025. https://doi.org/10.3389/fpsyg.2022.777025

Newell, A. (1990). Unified theories of cognition (pp. xvii, 549). Harvard University Press.

Nidhee Jadeja, Nina J Zhu, Reda M Lebcir, Franco Sassi, Alison Holmes, & Raheelah Ahmad. (2022). Using system dynamics modelling to assess the economic efficiency of innovations in the public sector—A systematic review. PLOS ONE, 17(2), e0263299–e0263299. https://doi.org/10.1371/journal.pone.0263299

Parvizian, J., & Tarkesh, H. (2014). Emotional Decision Making in System Dynamics. System Dynamics Review.

Radzicki, M. J. (2005). Institutional Economics, Post Keynesian Economics, and System Dynamics: Three Strands of a Heterodox Economics Braid*.

Radzicki, M. J. (2008). System Dynamics and Its Contributionto Economics and Economic Modeling. Encyclopedia of Complexity and Systems Science. https://doi.org/10.1007/978-0-387-30440-3_539

Radzicki, M. J. (2021). Introduction to Feedback Economics. Feedback Economics, 1–8. https://doi.org/10.1007/978-3-030-67190-7_1

Richards, F. J. (1959). Flexible Growth Function for Empirical Use | Journal of Experimental Botany | Oxford Academic. Journal of Experimental Botany, 10(2), 290–301. https://doi.org/10.1093/jxb/10.2.290

Roos, M. (2017). Behavioral and complexity macroeconomics. European Journal of Economics and Economic Policies: Intervention, 14(2), 186–199. https://doi.org/10.4337/ejeep.2017.02.03

Sarmiento-Vásquez, A., & López-Sandoval, E. (2017). Una comparación cualitativa de la dinámica de sistemas, la simulación de eventos discretos y la simulación basada en agentes. Ingeniería Industrial, 27. https://doi.org/10.26439/ing.ind2017.n035.1789

Senge, P. (2006). The Fifth Discipline: The art and practice of the learning organization. Random House Books.

Senge, P. M., & Sterman, J. D. (1992). Systems thinking and organizational learning: Acting locally and thinking globally in the organization of the future. European Journal of Operational Research, 59(1), 137–150. https://doi.org/10.1016/0377-2217(92)90011-w

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Simon, H. A. (1955). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69(1), Article 1. https://doi.org/10.2307/1884852

Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3), 665–690. https://doi.org/10.1016/s0304-3932(03)00029-1

Slovic, P. (2016). The Perception of Risk. En Scientists Making a Difference: One Hundred Eminent Behavioral and Brain Scientists Talk about their Most Important Contributions (pp. 179–182). https://doi.org/10.1017/CBO9781316422250.040

Sterman, J. (2000). Business Dynamics, System Thinking and Modeling for a Complex World (Irwin McGraw-Hill).

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science (New York, N.Y.), 331(6022), 1279–1285. https://doi.org/10.1126/science.1192788

Thaler, R. H. (2015). Misbehaving: The making of behavioral economics (pp. xvi, 415). W W Norton & Co.

Thaler, R., & Sunstein, C. (2008). Nudge: Improving decisions about health, wealth, and happiness. University of Chicago Press.

Tiedens, L. Z., & Linton, S. (2001). Judgment under emotional certainty and uncertainty: The effects of specific emotions on information processing. Journal of Personality and Social Psychology, 81(6), 973–988. https://doi.org/10.1037/0022-3514.81.6.973

Tversky, A. & Kahneman. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(27), Article 27. https://doi.org/10.1126/science.185.4157.1124

Uehara, T., Nagase, Y., & Wakeland, W. W. (2013). Integrating Economics and System Dynamics Approaches for Modeling an Ecological-Economic System. https://doi.org/10.1002/sres.2373

Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331–350. https://doi.org/10.1037/0096-3445.132.3.331

Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/fα noise in human cognition. Psychonomic Bulletin & Review, 11(4), 579–615. https://doi.org/10.3758/BF03196615

Weaver, W. (1948). Science and Complexity. American Scientist, 36(4), 536–544.

Weber, G. F. (2020). Information Dynamics in Complex Systems Negates a Dichotomy between Chance and Necessity. Information, 11(5), Article 5. https://doi.org/10.3390/info11050245

Wu, T., Alexander J. Dufford, Dufford, A. J., Mackie, M.-A., Egan, L. J., & Fan, J. (2016). The Capacity of Cognitive Control Estimated from a Perceptual Decision Making Task. Scientific Reports, 6(1), 34025–34025. https://doi.org/10.1038/srep34025

Yang, J. (2018). INFORMATION THEORETIC APPROACHES IN ECONOMICS. Journal of Economic Surveys, 32(3), 940–960.

Yuan, B., Zhang, J., Lyu, A., Wu, J., Wang, Z., Yang, M., Liu, K., Mou, M., & Cui, P. (2024). Emergence and Causality in Complex Systems: A Survey of Causal Emergence and Related Quantitative Studies. Entropy, 26(2), Article 2. https://doi.org/10.3390/e26020108

Zheng, W. (2003). Entropy, information, noise-studies on system evolution. Journal of Systems Science and Systems Engineering, 12(1), 2–12. https://doi.org/10.1007/s11518-006-0117-7

Publicado
18-09-2025
Cómo citar
Pérez-Ortega, R., Plazola-Zamora, L., & de Lucena Costa Junior, A. (2025). Economía de la complejidad y la toma de decisiones: una visión desde la dinámica de sistemas. Denarius, 2(49), 85-116. https://doi.org/10.24275/uam/izt/dcsh/denarius/v22025n49/Perez-Ortega